

Microbial inactivation by the solar-assisted Fenton process at near-neutral pH

Dr. Stefanos Giannakis

Dipl. Civil Engineer, MSc, PhD, DSc

Group of Advanced Oxidation Processes

École Polytechnique Fédérale de Lausanne (EPFL) Lausanne, Switzerland

Porto, 12 July 2017

Introduction? Lucky to present so late ©

From Fenton...

$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + OH^$ k₁=76 M⁻¹s⁻¹

 $Fe^{3+} + H_2O_2 \rightarrow Fe^{2+} + HO_2^{\bullet} + H^+$ k₂=0.01 M⁻¹s⁻¹

Limiting step!

...to photo-Fenton

 $Fe^{3+} + H_2O \xrightarrow{hv} Fe^{2+} + H^+ + HO^{\bullet}$

Photo-catalytic significance of iron

Reaction No.	Reaction	Reaction Constant
(1)	$Fe^{3+} + H_2O \leftrightarrow Fe(OH)^{2+} + H^+$	$(k_1 = 2.9x10^{-3}M)$
(2)	$Fe^{3+} + 2H_2O \leftrightarrow Fe(OH)_2^+ + 2H^+$	$(k_2 = 7.62 x 10^{-7} M^2)$
(3)	$2Fe^{3+} + 2H_20 \leftrightarrow \mathrm{Fe}_2(\mathrm{OH})_2^{4+} + 2H^+$	$(k_{2.2} = 0.8x10^{-3}M)$
(4)	$Fe^{3+} + H_2O_2 \leftrightarrow Fe^{3+}(HO_2)^{2+} + H^+$	$(kI_1 = 3.1x10^{-3})$
(5)	$\operatorname{Fe}(\operatorname{OH})^{2+} + H_2O_2 \leftrightarrow \operatorname{Fe}^{3+}(OH)(\operatorname{HO}_2)^+ + H^+$	$(kI_2 = 2x10^{-4})$
(6a)	$\mathrm{Fe}^{3+}(\mathrm{HO}_2)^{2+} \rightarrow \mathrm{Fe}^{2+} + HO_2^{\bullet}$	$(k_6 = x 10^{-3} s^{-1})$
(6b)	$\operatorname{Fe}^{3+}(OH)(\operatorname{HO}_2)^+ \to \operatorname{Fe}^{2+} + HO_2^{\bullet} + OH^-$	$(k_6 = x 10^{-3} s^{-1})$
(7)	$\mathrm{Fe}^{2+} + H_2O_2 \rightarrow Fe^{3+} + HO^{\bullet} + OH^-$	$(k_7 = 63 \ M^{-1} s^{-1})$
(8)	$Fe^{2+} + HO^{\bullet} \rightarrow Fe^{3+} + OH^{-}$	$(k_8 = 3.2x 10^8 M^{-1} s^{-1})$
(9)	$HO^{\bullet} + H_2O_2 \rightarrow HO_2^{\bullet} + H_2O$	$(k_9 = 3.3x 10^9 M^{-1} s^{-1})$
(10a)	$\operatorname{Fe}^{2+} + HO_2^{\bullet} \to \operatorname{Fe}^{3+}(\operatorname{HO}_2)^{2+}$	$(k_{10a} = 1.2x10^6 M^{-1} s^{-1})$
(10b)	$Fe^{2+} + O_2^{\bullet-} + H^+ \to Fe^{3+}(HO_2)^{2+}$	$(k_{10b} = 1x10^7 M^{-1} s^{-1})$
(11a)	$\mathrm{Fe}^{3+} + HO_2^{\bullet} \rightarrow \mathrm{Fe}^{2+} + O_2 + H^+$	$(k_{11a} < 2x10^3 M^{-1} s^{-1})$
(11b)	$\mathrm{Fe}^{3+} + \mathcal{O}_2^{\bullet-} \to \mathrm{Fe}^{2+} + \mathcal{O}_2$	$(k_{11b} = 5x10^7 M^{-1} s^{-1})$
(12a)	$HO_2^{\bullet} \to O_2^{\bullet-} + H^+$	$(k_{12a} = 1.58x 10^5 M^{-1} s^{-1})$
(12b)	$O_2^{\bullet-} + H^+ \to HO_2^{\bullet}$	$(k_{12b} = 1x10^{10}M^{-1}s^{-1})$
(13a)	$HO_2^{\bullet} + HO_2^{\bullet} \to H_2O_2 + O_2$	$(k_{13a} = 8.3x10^5 M^{-1} s^{-1})$
(13b)	$HO_2^{\bullet} + O_2^{\bullet-} + H_2O \to H_2O_2 + O_2 + OH^-$	$(k_{13b} = 9.7x10^7 M^{-1} s^{-1})$
(14a)	$HO^{\bullet} + HO_2^{\bullet} \to H_2O + O_2$	$(k_{14a} = 0.71x10^{10}M^{-1}s^{-1})$
(14b)	$HO^{\bullet} + O_2^{\bullet-} \to O_2 + OH^-$	$(k_{14\mathrm{b}} = 1.01 x 10^{10} M^{-1} s^{-1})$
(15)	$HO^{\bullet} + HO^{\bullet} \to H_2O_2$	$(k_{15} = 5.2x10^9 M^{-1} s^{-1})$

Reactions initiated by iron

Initiation Propagation Termination

De Laat, J., & Gallard, H. (1999). Catalytic decomposition of hydrogen peroxide by Fe (III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environmental Science & Technology, 33(16), 2726-2732.

Highlights of the present work

Microorganism inactivation

Kinetics of single-target elimination

- Bacteria
- Viruses
- Yeasts

Photo-Fenton: near-neutral pH

- Low Fe(II),(III) and H₂O₂ concentration
- Controlled, simulated wastewater experiments
- Solar simulators as light source

Our models...

Structural differences

Surface coat protein Packed under pressure Only 1 to 2 layers of peptidoglycan Plasma membrane Chitin, thick outer layer Double layer plasma membrane

1) Action of solar light: baseline, and an AOP in disguise

6) Effect of the matrix

Bacterial inactivation: *Step-wise construction of a mechanistic interpretation*

Baseline: effect of solar light

Direct action of light

Repair!

Solar light alone (?)

Solar light alone is an "indirect" AOP

ONLY BY SOLAR LIGHT

Solar light + H_2O_2

Solar light + H_2O_2 + Fe

Previous work on bacteria

Applied Catalysis B: Environmental Volume 96, Issues 1–2, 26 April 2010, Pages 126–141

The effect of Fe^{2+} , Fe^{3+} , H_2O_2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing *Escherichia coli* K12

Dorothee Spuhler 🖾, Julian Andrés Rengifo-Herrera, César Pulgarin 🛓 · 🖾 · 🖾

Institute of Chemical Sciences and Engineering (ISIC), EPF Lausanne, CH-1015 Lausanne, Switzerland Received 26 November 2009, Revised 1 February 2010, Accepted 4 February 2010, Available online 12 February 2010

But also ...

Ruales-Lonfat, C., Benítez, N., Sienkiewicz, A. and Pulgarín, C. (2014)

Deleterious effect of homogeneous and heterogeneous near-neutral photo-Fenton system on Escherichia coli. Comparison with photo-catalytic action of TiO₂ during cell envelope disruption. *Applied Catalysis B: Environmental 160, 286-297.*

Ndounla, J., Kenfack, S., Wéthé, J. and Pulgarin, C. (2014)

Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor. *Applied Catalysis B: Environmental 148-149, 144-153.*

Ruales-Lonfat, C., Barona, J. F., Sienkiewicz, A., Bensimon, M., Vélez-Colmenares, J., Benítez, N., & Pulgarín, C. (2015). Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH.

Applied Catalysis B: Environmental, 166, 497-508.

...and many more

Iron oxides as semiconductors and as pF catalysts

Ruales-Lonfat, C., Benítez, N., Sienkiewicz, A., & Pulgarín, C. (2014).. Applied Catalysis B: Environmental, 160, 286-297.

Integrated mechanism

Giannakis, S., Polo López, M.I., Spuhler, D., Sánchez Pérez, J.A., Fernández Ibáñez, P., Pulgarin, C. (2016) Applied Catalysis B: Environmental, 199, pp. 199-223. Giannakis, S., Polo López, M.I., Spuhler, D., Sanchez Pérez, J.A., Fernandez Ibáñez, P., Pulgarin, C. (2016) Applied Catalysis B: Environmental, 198, pp. 431-446.

Previous work on viruses

Applied Catalysis B: Environmental

Volumes 174-175, September 2015, Pages 395-402

Principal parameters affecting virus inactivation by the solar photo-Fenton process at neutral pH and µM concentrations of $\rm H_2O_2$ and $\rm Fe^{2+/3+}$

E. Ortega-Gómez^{a, b}, M.M. Ballesteros Martín^{b, d}, A. Carratalà^c, P. Fernández Ibañez^{b, e}, J.A. Sánchez Pérez^{a, b}, C. Pulgarín^{f,} 📥

^a Department of Chemical Engineering, University of Almería, 04120 Almería, Spain

^b CIESOL, Joint Centre of the University of Almería-CIEMAT, 04120 Almería, Spain

^o Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

^d Department of Molecular Biology and Biochemical Engineering, University of Pablo de Olavide, 41013 Sevilla, Spain

e Plataforma Solar de Almería, CIEMAT, 04200 Tabern ^f École Polytechnique Fédérale de Lausanne, Institute

Received 13 November 2014, Revised 11 February 20 March 2015

Ortega-Gomez et al. (2015), App. Cat. B., pp. 395-402

Proposed inactivation mechanism

Key to inactivation: iron complexation with HA

Available ironPhoto-Fentonthroughout the test !takes place!

S. Giannakis, S. Liu, A. Carratala, S. Rtimi, M. Bensimon, C. Pulgarin, Applied Catalysis B: Environmental (2017).

Yeast Inactivation: a brief summary in MQ

S. Giannakis, C. Ruales-Lonfat, S. Rtimi, S. Thabet, P. Cotton, C. Pulgarin, Applied Catalysis B: Environmental 185 (2016) 150-162.

DNA and protein damages (photo-Fenton process)

 $hv/FeSO_4/H_2O_2$ at pH = 5.5

Proposed inactivation mechanism

Wastewater is...

Highly heterogeneous

Effluent Organic Matter (EfOM)

Loaded with targets for light

Oxidizable Organic Matter (OxOM)

• Providing radical targets

OM and Microorganisms

Containing photo-sensitizers

Photosensitizable Organic Matter (PhOM)

Proposed degradation pathway

Abbreviations

EfOM: Effluent Organic Matter

PhOM: Photo-sensitizable fraction of EfOM

OxOM: Oxidizable fraction of EfOM

> (i)-(vii): solar-induced pathways

S. Giannakis, F.A. Gamarra Vives, D. Grandjean, A. Magnet, L.F. De Alencastro, C. Pulgarin, Water research 84 (2015) 295-306.

Summary: The time for >4-log inactivation

Attention: Dynamic response of the microorganisms

Take – home messages:

Mechanistic proposition photo-Fenton action mode

- Cultivability
- Flow cytometry
- Use of single knock-out mutant strains
- DNA damages (Electrophoresis)
- Cell wall & internal protein degradation (Electrophoresis)
- Membrane peroxidation (MDA)
- Membrane integrity (ONPG)
- ROS generation (EPR, ESR)
- Literature

Kinetics?

Thermodynamic aspects?

Proper controls?

View in the final application – Regrowth?

What do you want to prove?

Thank you for your attention, questions?

OН

(glc)_n

More info:

H0 ~~~

OH

OH

HC

WATERSP

OH

Dr. Stefanos Giannakis, E-mail: stefanos.giannakis@epfl.ch

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement number 688928

(glc)

ЭH

OH

°0H

OH

OH