

European PhD School on Advanced Oxidation Processes

2nd Summer School on

Environmental applications of Advanced Oxidation Processes

and Training School on Advanced Treatment Technologies

Advanced Treatment Technologies and Contaminants of Emerging Concern (NEREUS COST Action ES1403)

Porto (Portugal), June 10-14, 2017

José Antonio Sánchez Pérez

jsanchez@ual.es

CIESOL-ADVANCED TECHNOLOGIES FOR WATER RECYCLING

University of Almería

Applications of raceway pond reactors for solar photo-Fenton: principles and uses

ADVANCED TECHNOLOGIES FOR WATER RECYCLING

José Antonio Sánchez Pérez

Principles

Very low concentration of persistent pollutants (tens or hundreds of μ g/L)

AOPs are proposed for micropollutant removal as polishing treatment

The photo-Fenton process

is especially interesting since it has been successfully applied for the removal of persistent organic contaminants using solar UV-A radiation

Applied Catalysis B: Environmental. 119-120: 132-138 (2012)

Principles: Factors affecting solar photo-Fenton process performance

11-07-2017

IESOL

Solar collector surface Reaction time Reactant supply Costs

Decontaminated water

Outputs:

Tubular reactors provided with compound parabolic collectors CPC

- ✓ 5 cm-diameter tubular loop
- ✓ Low volume/surface ratio, ~10 L/m²
- ✓ Tube evenly illuminated
- ✓ Efficiently direct light into the tubes

7/31

ADVANCED TECHNOLOGIES FOR WATER RECYCLING

Wastewater

Impact of pollutant concentration

Impact of pollutant concentration

11-07-2017

The reaction time for photo-Fenton process

Most of the studies on solar photo-Fenton for organic contaminant removal deal with mineralisation rate or pollutant conversion rate as a function of two equivalent parameters:

Catalysis Today 147(1): 1-59 (2009)

11-07-2017

The reaction time for photo-Fenton process

Most of the studies on solar photo-Fenton for organic contaminant removal deal with mineralisation rate or pollutant conversion rate as a function of two equivalent parameters:

✓ The normalized exposure time calculated for standard conditions of solar UV irradiance of 30 W m⁻², t_{30W}, min

$$t_{30W} = t_{30W,n-1} + Dt_n \frac{UV}{30} \frac{V_i}{V_T}$$

where Δt_n is the experimental time for each sample, UV is the average solar ultraviolet radiation measured during Δt_n , and t_{30W} is the "normalized illumination time"

 t_{30W} refers to a constant solar UV power of 30 W m⁻² (typical solar UV power on a perfectly sunny day around noon), V_T is the total water volume loaded in the plant and V_i is the irradiated volume

Catalysis Today 147(1): 1-59 (2009)

 The accumulated solar UV energy received per unit volume of treated water, Q_{UV}, kJ L⁻¹

$$Q_{UV} = \sum Q_{UV_{n-1}} + UV_{n-1}\frac{A_r}{V_r} Dt_n$$

where Δt_n is the experimental time interval for sample n, UVA_{n-1} is the average of solar at exposure time interval t_n - t_{n-1} , A_r is the illuminated area of the reactor (m²) and V_T is the total volume of treated water (L)

The accumulated solar UV energy received per unit volume of treated water, Q_{UV} , kJ L⁻¹

$$Q_{UV} = \sum Q_{UV_{n-1}} + UV_{n-1}\frac{A_r}{V_T}Dt_n$$

where Δt_n is the experimental time interval for sample n, UVA_{n-1} is the average of solar at exposure time interval t_n - t_{n-1} , A_r is the illuminated area of the reactor (m²) and V_T is the total volume of treated water (L)

These parameters are used for the evaluation of organic matter degradation in water for different solar reactors (regardless of the concept design used e.g. for stirred tanks or tubular reactors)

 Q_{UV} and t_{30W} are expressions of treatment time taking into account irradiance reaching the reactor surface.

 Q_{UV} and t_{30W} are useful in case of reaction rate is limited by light availability

Photon absorption

Volumetric rate of photon absorption, VRPA, combines the effects of Fe concentration, irradiance, optical properties of the absorbing species and liquid depth

 $VRPA_{Direct} = \frac{\log_e 10}{D} \int_{Z=0}^{Z=D} k_A \left[Fe^{3+}\right] UV_{direct} \ 10^{-k_A \left[Fe\right] Z/\cos\theta} dz$

$$VRPA_{Diffuse} = \frac{\log_e 10}{D} \int_{Z=0}^{Z=D} \frac{1}{\pi} \int_{\phi=-\pi/2}^{\phi=\pi/2} k_A \ [Fe^{3+}] \ UV_{diffuse} \ 10^{-k_A [Fe]Z/\cos\phi} \ d\phi \ dz$$

Specific absorption coefficient: k_A (mM⁻¹ m⁻¹) = 36.84 + 0.51 T (° C) r² = 0.998

 $P_{\rm diffuse} = \frac{1}{\cos(\varphi)}$

P = optical path length

The solar UV fractions, direct and diffuse, are measured and total VRPA is obtained by addition of both components

Applied Catalysis B: Environmental. 166–167: 295–301 (2015)

Applied Catalysis B: Environmental 178: 210–217 (2015)

 P_{direct}

D = liquid depth

 $=\frac{1}{\cos(\theta)}$

 $\mathsf{P}_{\mathsf{direct}}$

z = 0

z = D

ADVANCED TECHNOLOGIES FOR WATER RECYCLING

www.ciesol.com

Principles: Effect of irradiance and liquid depth on micropollutant removal by solar photo-Fenton

11-07-2017

www.ciesol.com

Effect of irradiance and liquid depth on micropollutant removal by solar photo-Fenton

 D_2

 $D_{2}=10 \text{ cm}$

 ∞

 $D_1 = 5 \text{ cm}$

16/31

 D_1

Model pollutant	Acetamiprid, ACTM (100 μg/L)
Initial conditions	50 mg/L H ₂ O ₂ (excess)
Water matrix	Simulated WWTP effluent, pH 2.8

Acetamiprid: neonicotinoid included in the watch list of EU Commission Decision 495/2015 on CECs

Science of the Total Environment 478: 123–132 (2014)

11-07-2017

New strategy: to use a reactor with variable light path

Principles: Raceway Pond Reactors

19/31

José Antonio Sánchez Pérez

ADVANCED TECHNOLOGIES FOR WATER RECYCLING

Raceway Pond Reactors (RPRs)

Extensively applied for microalgal mass culture

www.ciesol.com

Production costs in RPR are markedly lower than in tubular photobioreactors for microalgal applications

In Raceway Pond Reactors (RPR) liquid depth can be easily varied

5 cm liquid depth

15 cm liquid depth

Low cost materials, mainly plastic liners. Construction cost ~ 10 €/m²

Saving in costs is expected for micropollutant removal

Journal of Hazardous Materials 279: 322-329 (2014)

11-07-2017

Uses:

Operation of raceway pond reactors at acidic pH

22/31

José Antonio Sánchez Pérez

Modelling of acetamiprid removal at acidic pH

- The model should take into account:
- ✓ Temperature
- ✓ Irradiance & depth → rate of photon absorption
- ✓ Photolimitation
- ✓ Photosaturation

11-07-2017

Modelling of acetamiprid removal at acidic pH

		The model should take into account:
Reaction	Rate equation	Temperature
$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + R$	$r_1 = k_1 [H_2O_2] [Fe^{2+}]$	Irradiance & depth \rightarrow rate of photon absorption Photolimitation
Fe^{3+} + UV \rightarrow Fe^{3+*}	$r_2 = VRPA$	Photosaturation
$Fe^{3+*} \rightarrow Fe^{3+} + Q$	$r_3 = k_3 [Fe^{3+*}]$	Q - heat released
Fe^{3+*} + H ₂ O \rightarrow Fe ²⁺ + R	$r_4 = k_4 [Fe^{3+*}]$	R - radicals (HO•, mainly)
$\mathrm{Fe^{3+}}$ + $\mathrm{H_2O_2} \rightarrow \mathrm{Fe^{2+}}$ + R	$r_5 = k_5 [H_2O_2] [Fe^{3+}]$	
$OM + R \rightarrow MX$	$r_6 = k_6 [OM] [R]$	OM - organic matter
$\mathrm{H}_2\mathrm{O}_2 + \mathrm{R} \rightarrow \mathrm{H}_2\mathrm{O} + \mathrm{O}_2$	$r_7 = k_7 [H_2 O_2] [R]$	MX - oxidized organic matter
$A + R \rightarrow MX$	$r_8 = k_8 [A] [R]$	A - target micropollutant

- ✓ A fraction of absorbed radiation can be converted into heat
- ✓ Saturation of Fe³⁺ photoreduction, explained by the excess of photon absorption being split between heat release and electron transfer which forms Fe²⁺ and hydroxyl radicals
 24/31

Model state mass balances $\frac{d[Fe^{2+}]}{dt} = -r_1 + r_4 + r_5$ $\frac{d[Fe^{3+}]}{dt} = -r_2 + r_1 + r_3 - r_5$ $\frac{d[Fe^{3+*}]}{dt} = r_2 - r_4 - r_3$ $\frac{d[H_2O_2]}{dt} = -r_1 - r_5 - r_7$ $\frac{d[R]}{dt} = r_1 + r_4 + r_5 - r_6 - r_7 - r_8$ $\frac{d[A]}{dt} = -r_8$ $\frac{d[OM]}{dt} = -0.0005$ The dynamic model was obtained by imposing mass balances for each of the model states, assuming the hypothesis of batch operation and perfect mixing

Mixing time << reaction time

Chemical Engineering Journal 310 (2017) 464–472

25/31

ADVANCED TECHNOLOGIES FOR WATER RECYCLING

www.ciesol.com

Model state mass balances $\frac{d[Fe^{2+}]}{dt} = -r_1 + r_4 + r_5$ $\frac{d[Fe^{3+}]}{dt} = -r_2 + r_1 + r_3 - r_5$ $\frac{d[Fe^{3+*}]}{dt} = r_2 - r_4 - r_3$ $\frac{d[H_2O_2]}{dt} = -r_1 - r_5 - r_7$ $\frac{d[R]}{dt} = r_1 + r_4 + r_5 - r_6 - r_7 - r_8$ $\frac{d[A]}{dt} = -r_8$ $\frac{d[OM]}{dt} = -0.0005$ The dynamic model was obtained by imposing mass balances for each of the model states, assuming the hypothesis of batch operation and perfect mixing

Mixing time << reaction time

The kinetic parameters were obtained by the built-in functions of the MATLAB[®] optimization toolbox

Kinetic constants	
$k_1 = 5.93 \ 10^6 e^{-(\frac{34200}{RT})}$, r ² =0.94	(mM ⁻¹ min ⁻¹)
$k_3 = 16.8$	(min ⁻¹)
$k_4 = 4.98$	(min ⁻¹)
$k_5 = 3.28 \ 10^5 e^{-(rac{42000}{RT})}$, r ² =0.98	(mM ⁻¹ min ⁻¹)
$k_6 = 1.83$	(mM ⁻¹ min ⁻¹)
$k_7 = 1.67$	(mM ⁻¹ min ⁻¹)
$k_8 = 35.8$	(mM ⁻¹ min ⁻¹)

Chemical Engineering Journal 310 (2017) 464–472

Time-courses of ACTM and H₂O₂ of lab-scale experiments with Fe²⁺ 0.095 mM

The model properly fits the data and takes into account the variation in T and VRPA

27 / 31

11-07-2017

Model validation with outdoor experiments carried out in a 360-L RPR

Fe²⁺ 0.018 and 0.18 mM (1 and 10 mg/L)

H₂O₂ 1.47 mM (50 mg/L)

Irradiance $\approx 27 - 29 \text{ W/m}^2$ Temperature $\approx 21 - 27 \degree$ C

11-07-2017

Uses:

Operation of raceway pond reactors at neutral pH

Solar photo-Fenton at neutral pH

- Need to keep iron dissolved
- ✓ EDDS: stable soluble complex with Fe³⁺ (S,S)-ethylenediamine-N,N`-disuccinic acid
- ✓ 1:2 as the best Fe³⁺/EDDS molar ratio

✓ Biodegradable and non toxic

Fe³⁺/EDDS complex at 0.2/0.4 mM (10 mg/L Fe) Simulated secondary effluent at pH 6.5 – 7 Irradiance $\approx 34 - 36$ W/m² Temperature $\approx 28 - 29$ ° C H₂O₂ 1.47 mM (50 mg/L)

A mixture of five pharmaceuticals: Ofloxacin, Sulfamethoxazole, Ibuprofen, Carbamazepine, Flumequine, 100 μg/L each (500 μg/L in total)

80-L = 15 cm Liquid depth

120-L = 20 cm Liquid depth

There were no significant differences between both liquid depths

Treatment of a real WWTP secondary effluent spiked with 500 μ g/L of five pharmaceuticals

120-L = 20 cm Liquid depth

0.1 mM Fe(III) 0.2 mM EDDS

Fe³⁺/EDDS complex at 0.1/0.2 mM (5.5 mg/L Fe)

H₂O₂ 1.47 mM (50 mg/L)

Irradiance ≈ 20 W/m²

Temperature $\approx 20^{\circ}$ C

pH ≈ 7

A mixture of five pharmaceuticals: Ofloxacin, Sulfamethoxazole, Ibuprofen, Carbamazepine, Flumequine, 100 μg/L each (500 μg/L total)

11-07-2017

The operation of RPRs at neutral pH by using the Fe³⁺:EDDS complex gave rise to:

- ✓ High efficiency in toxicity removal by solar photo-Fenton at neutral pH with Fe³⁺:EDDS
- ✓ Higher micropollutant removal efficiency for RPRs than CPCs

Catalysis Today 287:10-14 (2017)

Journal of Chemical Technology & Biotechnology. DOI: 10.1002/jctb.5212 (2017)

Concluding remarks

34 / 31

José Antonio Sánchez Pérez

- ✓ It is necessary to consider whether photon flux is rate limiting or there is photon excess
- ✓ To make better use of photons under irradiance excess conditions, Fe concentration can be increased or reactor light path length can be enlarged
- ✓ RPRs allow light path length to be changed as a function of solar irradiance
- \checkmark The photoreactor can be operated at up to 20 cm liquid depth (200 L/m²)
- ✓ The presented results demonstrate the operational viability of the solar photo-Fenton process in RPRs for the removal of micropollutants

Research group: Water Treatment

Solar Energy Research Center (CIESOL)

Joint Center Universidad de Almería – Plataforma Solar de Almería

José Antonio Sánchez Pérez University of Almería, Spain Contact: jsanchez@ual.es

11-07-2017

JUNE 4th-8th - 2018 Almería, spain

10th EUROPEAN MEETING ON SOLAR CHEMISTRY AND PHOTOCATALYSIS: ENVIRONMENTAL APPLICATIONS

See you in Almería!!

José Antonio Sánchez Pérez