

1st Summer School on Environmental applications of Advanced Oxidation Processes

University of Salerno, Department of Civil Engineering Fisciano (Italy), June 15-19, 2015

Wastewater treatment by ozonation

Santiago Esplugas

Department of Chemical Engineering, University of Barcelona, Spain.

OUTLINE

Introduction

- Advanced treatment
- Ozone and AOPs _ Fundamentals

WW O₃ treatment

- WW characteristics
- Modeling of O₃ mass transfer
- IOD, K_La, k_d estimation
- WW changes and pollutants removal

Conclusions

Advanced treatment

Why advanced treatment of wastewaters?

- Improvement of water quality
- Wastewater reuse: increase of water availability

Objective : Sustainable use of water

- □ Answer to water shortage
- Minimization of environmental and health risks

New challenge : *Emerging micropollutants removal*

Advanced treatment µcontaminants removal

O₃ AND AOPs _ Fundamental notions

Standards redox potentials (298 K, H₂)

Name	E ° (V)
Fluor	3,03
Hydroxyl radical	2,80
Ozone	2,07
Hydrogen peroxide	1,78
Potassium permanganate	1,68

Molecular O₃ attack is selective : attack on high electronic density sites. HO- attack is much more unselective : few compounds resist to its action.

HO- Initiators	HO. Promoters	HO. Inhibitors
Hydroxide ions Hydrogen peroxide UV ₂₅₄ radiation Heterogeneous catalysts Organic matter	Ozone Hydrogen peroxide Organic Matter	Hydrogen peroxide Carbonates Organic Matter Ter-butanol

O₃ in Wastewater treatment

CLASICAL WASTEWATER TREATMENT PLANT (WWTP)

Water and Wastewater parameters

Conventional parameters

- Chemical Oxygen Demand
- Biological Oxygen Demand
- Dissolved Organic Carbon
- UV-Absorbance at 254 nm
- Suspended Solids
- Turbidity
- Inorganic Carbon
- pH
- Nitrate and ammonia content

Micropollutant analysis

- VOCs
- PAHs
- Pesticides
- Phtalates
- Octylphenols//nonylphenols

Organic matter fractionation

LC-OCD-ON-UVA

Water and Wastewater parameters LC-OCD ANALYSIS

LC-OCD-OND-UVAD stands for Liquid Chromatography (size exclusion) Organic Carbon Detection, Organic Nitrogen Detection and Ultra-Violet Detection.

Fraction	Molecular weight	Description
Biopolymers	>> 20,000 Da	Polysaccharides and proteins. High molecular weight, hydrophilic and non-UV absorbable.
Humic substances	≈ 1,000 Da	Calibration based on Suwannee River standard from IHSS.
Building blocks or humic-like substances	350 – 500 Da	Breakdown products of humic substances.
Acids and low- molecular weight humics	< 350 Da	Aliphatic and low molecular weight organic acids
Low-molecular weight neutrals	< 350 Da	Weakly or uncharged low molecular weight compounds as well as low molecular weight slightly hydrophobic compounds

Modeling of O₃ mass transfer

Ozonation is an absorption process

- Mass transfer rate dependent on
 - Physical properties of phases
 - Concentrations at the interface
 - Degree of turbulence
- Two-film model
 - $N = (k_L.a).(C_L^*-C_L).V_L$
 - $C_{L}^{*} = f(C_{G}, P, T)$ Henry's law
 - C_L = f(mixing conditions)
 - k_L.a = f(hydrodynamic & operating conditions, reactor configuration)
- gas hold-up and bubble size

Modeling O₃ mass transfer

Mass transfer & kinetics Reaction regime

- Kinetics: first-order reaction for M, for Oxidant (O₃, OH°)
 O₃ + n M → Products r_{O3} = k.[O₃].[M], r_M = n.k.[O₃].[M]
 n : stoichiometric coefficient
 - Idem for reaction from HO°
 - Side reactions: scavenging effect, competition with OM oxidation
- Hydraulics: plug flow for the liquid phase
- Reaction regime

Modeling O₃ mass transfer

O_3 and O_3 -AOP reactors

	Determining characteristic(s)	Reactor type
Ha<0.02 - Very slow reaction	Liquid hold-up	Bubble column
0.02 <ha<0.3 reaction<="" slow="" th="" –=""><th>Chemical regime</th><th>Bubble column Stirred tank</th></ha<0.3>	Chemical regime	Bubble column Stirred tank
0.3 <ha<3 fast="" quite="" reaction<="" th="" –=""><th>Liquid hold-up Interfacial area</th><th>Stirred tank</th></ha<3>	Liquid hold-up Interfacial area	Stirred tank
Ha > 3 – Fast reaction	Interfacial area	Packing column
Ha >>3 – Instantaneous reaction	Transfer coefficient Interfacial area	Static mixer Ejector

IOD (Immediate Ozone Demand)

IOD : minimum amount of ozone dose (mg/L) to be transferred to have dissolved ozone in water (continuous flow)

IOD estimation al lab scale

$$N_{o3}(mol/(m^{2}.s)) = k_{g}(p_{o3} - p_{o3^{*}}) = k_{L}([O3]^{*} = [O3])$$

$$N_{o3}(mol/(m^{2}.s)) = k_{G}(p_{o3} - H[O3]) = k_{L}\left(\frac{p_{o3}}{H} - [O3]\right)$$

$$HENRY'S \text{ constant}$$

$$p_{O3} = H[O3]$$

$$p_{O3} = Hx_{O3}$$

IOD estimation al lab scale

Ozone balance in gas phase

$$Q_{Gas}([O3]_{gasin} - [O3]_{gasout}) = K_L a([O3]^* - [O3]) V_{Liq} = k_d [O3] V_{Liq} + \frac{d[O3]}{dt} V_{Liq}$$

IOD estimation al lab scale

IOD = 6 mg/L, contact time = 1 min

From these data it is easilty possible to estimate K_La and k_d

Estimation K_La , k_d at lab scale

Behavior ozone in water

Wastewater changes

Contaminant removal

С

- COD removal
- TOC removal
- BOD changes

WW changes: Size Molecular distribution

LC-OCD Analysis

HS and LMW neutrals decrease

with ozone dose

Building blocks increase with ozone dose

Cleavage of high MW into lower MW substances and acid formation

Conclusions

- Ozonation of wastewater effluents is able to reduce COD, DOC, UVA, Turbidity at the same time than the contaminant concentration.
- At low ozonation doses there is an increase of the biodegradability, BOD/COD, of the effluent.
- During ozonation there are important changes in the Size Molecular Distribution of the Organic Matter.
- Examination of the ozone mass balance provides three fundamental parameters: the instantaneous ozone demand, ozone mass transfer coefficient and the ozone decay kinetic constant.
- Their knowledge is of primary importance for the design of ozone contactors and for the determination of the appropriate operating conditions.

Centre d'Enginyeria Química Ambiental i del Producte

http://www.ub.edu/eq/cat/recerca_AOP.html

Group members

Professors Dr. Santiago Esplugas Dr. Jaime Gimenez

Associate Professors Dra. Carme Sans Dra. Esther Chamarro

Assistant Professors Dr. Óscar González Dr. Benardí Bayarri Dra. Pilar Marco

PhD Candidates Angel Cruz Violette Romero Ana Justo Antonella De Luca Mireia Marcé