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Why advanced treatment of wastewaters? 

 Improvement of water quality 

 Wastewater reuse: increase of water availability 

Advanced treatment 

Objective : Sustainable use of water 

  Answer to water shortage 

  Minimization of environmental and health risks 

New challenge : Emerging micropollutants removal 

 



Advanced treatment mcontaminants removal 

 

• Biological processes with high 
sludge retention time 

• N & DN 

• MBR 

• Membrane filtration 

• Nanofiltration 

• Reverse Osmosis 

• Activated carbon 

• Chemical oxidation 

• Chlorination 

• O3 and AOPs 
 

 

 

 

Need to treat the concentrate                                 
and waste 

Need to evaluate both the fate 

of the parent compounds as 

well as conjugates and 

bioactive by-products 



Name E° (V) 

Fluor 3,03 

Hydroxyl radical 2,80 

Ozone 2,07 

Hydrogen peroxide 1,78 

Potassium permanganate 1,68 

Standards redox potentials (298 K, H2) 

O3 AND AOPs _ Fundamental notions 
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Molecular O3 attack is selective : attack on high electronic density sites. 

HO· attack is much more unselective : few compounds resist to its action. 
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O3 in Wastewater treatment 
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 Chemical Oxygen Demand 

 Biological Oxygen Demand 

 Dissolved Organic Carbon 

 UV-Absorbance at 254 nm 

 Suspended Solids 

 Turbidity 

 Inorganic Carbon 

 pH 

 Nitrate and ammonia content 

Conventional parameters Micropollutant analysis 

 VOCs 

 PAHs 

 Pesticides 

 Phtalates 

 Octylphenols//nonylphenols 

 ….. 

Organic matter fractionation 

 LC-OCD-ON-UVA 

Water and Wastewater parameters 



Fraction 
Molecular 

weight 
Description 

Biopolymers >> 20,000 Da 

Polysaccharides and proteins. 

High molecular weight, hydrophilic 

and non-UV absorbable. 

Humic substances ≈ 1,000 Da 
Calibration based on Suwannee 

River standard from IHSS. 

Building blocks or 

humic-like 

substances 

350 – 500 Da 
Breakdown products of humic 

substances. 

Acids and low-

molecular weight 

humics 

< 350 Da 
Aliphatic and low molecular weight 

organic acids 

Low-molecular 

weight neutrals 
< 350 Da 

Weakly or uncharged low 

molecular weight compounds as 

well as low molecular weight 

slightly hydrophobic compounds 

LC-OCD ANALYSIS 

Water and Wastewater parameters 



Ozonation is an absorption process 

 

• Mass transfer rate dependent on 

• Physical properties of phases 

• Concentrations at the interface 

• Degree of turbulence 

 
 

• Two-film model 

            N = (kL.a).(CL*-CL).VL 

• CL* = f(CG, P, T) - Henry’s law 

• CL = f(mixing conditions) 

• kL.a = f(hydrodynamic & operating 
conditions, reactor configuration)  

 

 

 

 

•  gas hold-up and bubble size 

Mass flux 
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Interface 
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Modeling of O3 mass transfer 



 Mass transfer & kinetics Reaction regime  
 

• Kinetics: first-order reaction for M, for Oxidant (O3, OH°) 

 O3 + n M   Products rO3 = k.[O3].[M], rM = n.k.[O3].[M] 

     n : stoichiometric coefficient   

• Idem for reaction from HO° 

• Side reactions: scavenging effect, competition with 
OM oxidation 

• Hydraulics: plug flow for the liquid phase 
 

• Reaction regime    

      

Modeling O3 mass transfer 

Hatta number 



O3 and O3-AOP reactors 

 Determining 

characteristic(s) 

Reactor type 

Ha<0.02 - Very slow reaction Liquid hold-up Bubble column 

0.02<Ha<0.3 – Slow reaction Chemical regime 
Bubble column 

Stirred tank 

0.3<Ha<3 – Quite fast reaction 
Liquid hold-up 

 Interfacial area 
Stirred tank 

Ha > 3 – Fast reaction Interfacial area Packing column 

Ha >>3 – Instantaneous reaction 
Transfer coefficient 

Interfacial area 

Static mixer 

Ejector 

Modeling O3 mass transfer 

Hatta number 



IOD (Immediate Ozone Demand) 
IOD : minimum amount of ozone dose (mg/L) to be  transferred  to have 

dissolved ozone in water (continuous flow) 
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IOD estimation al lab scale 



Gas
gas in gas out r

Liq0

Q
TOD = ×([O3] -[O3] ) dt

V

t



Transferred Ozone Dose 

Immediate Ozone Demand (IOD)  
minimum amount of ozone to be 
transferred to have dissolved ozone in 
water 

Ozone balance in liquid phase 
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IOD estimation al lab scale 



From these data it is easilty possible to estimate KLa and kd 
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IOD estimation al lab scale 
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BOD 

COD 

time 

O3 dose 

TOC 

C 

• Contaminant removal 

• COD removal 

• TOC removal 

• BOD changes 

Wastewater  changes 

Kinetics  (C, TOC,COD, UVA) 

1st fast reaction 

2nd slow reaction 

Stoichiometry  

g (C, TOC, COD,UVA)  

removed/g O3 

Maximum of BOD 
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DOC (mg/L) 

Ozone dose (mg/L) 

HS and LMW neutrals 
decrease  
with ozone dose 

Building blocks 
increase 
with ozone dose 

Cleavage of high MW into  
lower MW substances 
and acid formation 

LC-OCD Analysis 

WW changes: Size Molecular distribution 



• Ozonation of wastewater effluents is able to reduce COD, DOC, UVA, 

Turbidity at the same time than the contaminant concentration.  

• At low ozonation doses there is an increase of the biodegradability, 

BOD/COD, of the effluent. 

• During ozonation there are important changes in the Size Molecular 

Distribution of  the Organic Matter. 

• Examination of the ozone mass balance provides three fundamental 

parameters: the instantaneous ozone demand, ozone mass transfer 

coefficient and the ozone decay kinetic constant.  

• Their knowledge is of primary importance for the design of ozone 

contactors and for the determination of the appropriate operating 

conditions. 

Conclusions 



http://www.ub.edu/eq/cat/recerca_AOP.html 


